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STABILITY RESULTS FOR ONE-STEP DISCRETIZED 
COLLOCATION METHODS IN THE NUMERICAL 

TREATMENT OF VOLTERRA INTEGRAL EQUATIONS 

M. R. CRISCI, E. RUSSO, AND A. VECCHIO 

ABSTRACT. This paper is concerned with the stability analysis of the discretized 
collocation method for the second-kind Volterra integral equation with degener- 
ate kernel. A fixed-order recurrence relation with variable coefficients is derived, 
and local stability conditions are given independent of the discretization. Local 
stability and stability with respect to an isolated perturbation of some meth- 
ods are proved. The reliability of the derived stability conditions is shown by 
numerical experiments. 

1. INTRODUCTION 

We consider the second-kind Volterrra integral equation 

(1.1) y(t) = g(t) + k(t, s, y(s))ds, t E [to, T], 

where g and k are given continuous functions on (to, T) and S x R, respec- 
tively, with S= {(t, s):to <s < t < T}. Let 

IN: to < tl < ..< tN = T 

denote a partition of the integration range, with ti+I - t1 = h, and let 0 < 
cl < c2 < <C m < 1 be m parameters. The one-step discretized collocation 
method [4, 9] (hereafter referred to as VDC) approximates the solution y(t) of 
(1.1) by a spline function u(t) defined by 

m 
(1.2) u(tl +sh) = Lk(S)Uik, SE [O 1], 

k=1 

where 
m 

(1.3) Lk(s) = f (S-Cj)/(Ck-Cj) 
j=1 

and the Uik are solutions of the system 

(1.4) Uij =g(t)='+r, 1 = 1,. . ., m, 
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where tij = t1 + cjh and vii, Oi. are quadrature sums approximating 

f k(t1j, s, u(s)) ds and J k(t1j, s, u(s)) ds, 

respectively. Following [9] (to which the reader is referred to for more details), 
the most common choices for vj and Oj are 

(a) 
i-I m-9O 

(1.5) T= hE Wk k(tij , tvk )Uvk) 
v=O k=1 

m-9 

(1.6) = h E Wjkk(tij, tik, Uik), 
k=1 

where 

(1.7) wk =jLk(s)ds, k = 1,.. ,m, 

(1.8) wjk =JLk(s)ds, k, j= l ... m, 

{ 0 for the "implicit discretization," 
= 1 for the "discretization using m - 1 points," 

j - 1 for the "explicit discretization," 
I j for the "diagonally explicit discretization." 

(b) 

"Fully implicit discretization": the y, given by (1.5) with , = 0, 

(1.9) Xk=h E cjwkk tij , tj + cjCkh , E Lv(cjCk)uiv) 
k=1 v=1 

so that the kernel k is computed only in S. 
VDC methods, until now, have been studied mainly with regard to conver- 

gence order [4, 7, 8], and less so with regard to stability properties. In [10] and 
[11] we analyzed stability of the exact collocation method by applying it to the 
basic and the convolution test equation, and to the second-kind integral equa- 
tion with degenerate kernel, respectively. Here we perform the stability analysis 
of the VDC method for a linear second-kind integral equation with degenerate 
kernel of rank n [3, 5], 

t n 

(1.10) y(t) = g(t) + J a,(t)b,(s)y(s)ds, t E [to, T]. 

From the Stone-Weierstrass theorem it follows that the class of degenerate ker- 
nels, 

n 

(.1k(t, s) a, E (t)b(s), 
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is dense in the class of all continuous kernels, so that (1.10) can be considered 
a significant test equation for stability analysis. 

Conditions ensuring the stability of the analytical solution of (1.1) are given 
in [1, 5, 9]. 

In order to analyze the stability properties of VDC methods, a finite-length 
recurrence relation is constructed in ?2 for a vector containing the numerical 
solution. This recursion is then used to prove local stability conditions. The 
conditions obtained are independent of the kernel decomposition and require 
the localization of the roots of a polynomial whose degree is the minimum of the 
rank of the kernel and the number of the collocation points. In the particular 
case of the degenerate convolution kernel, the above conditions are shown to 
furnish a priori stability conditions. In ?3, conditions for the stability of the 
trapezoidal rule are given. Then, for particular degenerate kernels, a class of 
VDC methods is determined, including those whose collocation parameters are 
the Legendre and Radau points, which satisfy the local stability conditions, and 
a bound for h is found which ensures the bounded propagation of an isolated 
perturbation in these methods. Finally, in ?5, numerical results are reported, 
showing the reliability of the stability conditions derived. 

2. RECURRENCE RELATION AND LOCAL STABILITY CONDITIONS 

In this section, stability theorems are derived for the VDC method applied 
to the second-kind Volterra integral equation with degenerate kernel (1.10). 
These theorems are independent of the choice of discretizations, such as those 
suggested in ? 1. The results obtained are analogous to those derived for the exact 
collocation method in [1 1], and since they are based on the same technique, only 
a short outline of the proofs is given. 

First we derive a finite-length recurrence relation for the method. To do so, 
we set 

(2.1) agjk = ak(tij) i 1, ... ., m, k = 1, ... ., n Ai = [a jk]* 

In correspondence to the chosen quadrature formulae (1.6), (1.9) we denote 
by z5 a quadrature sum for the integral ftt' bj(s)u(s) ds and we set 

Wjkk(tij2 tik) m k mm-i, , j=l...,m 

C3Wk ~ k~t1, for the discretization (a), 
(2.2) Sik = Ad k = m - 6 + 1, . ) .,m, =1...,m, 

0CjWk EV=1 k(tiE tj + cjcvh)Lk (CjCv), 
j, k = 1,..., m, for the discretization (b), 

S =(Sjk) 

Phi, k = Wkbi (tik), k = 1, . m - 9, j =1,..... n, 

(2.3) J k 10 k = m- 6+ 1. .. ,m, j=l 1..... ,n, 
Bi = (Il4k). 

Let Ik be the identity matrix of order k and 

(2.4) .r [ 9i) =sl1 [9(i) git,m,] 1*** n 
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(2.6) L = [LI(1), ...,Lm(1)]T, 

r1 -L 0 0 0 0 
Mo6= [ Im-hSi o] Ml=[O g Ai 

Lo -hBi In i O 0 Ini 

Then the following theorem holds. 

Theorem 2.1. The application of the VDC method to a second-kind Volterra inte- 
gral equation with degenerate kernel leads to the finite-length recurrence relation 

(2.7) M M' (g?). 

Proof. The proof is outlined only for the case of the implicit discretization. 
Using the above notations, we have 

n 

vi' = Ea,(tij)Z, 
1=1 

and the assertion follows from (1.2) and (1.4) by observing that in the case 
considered, z' satisfies 

m 
(2.8) zi+1 = zi + h E Wkb,(tik)Uik. *0 

k=1 

Remark 2.1 . In the particular case of the polynomial convolution kernel, it can 
be shown by tedious algebraic manipulations that the recurrence formula (2.7) 
reduces to the recursion derived in [2] for an extended Runge-Kutta method. 0 

From the applicability of the method it follows that Im - hSi is invertible, 
so that (2.7) can be written as 

(2.9) Vi+1 = Mivi + Pi, 

where 

0 
(2.10) Pi= (Im hSi)-' g 

hBi(Im -hSi)giJ 

and the stability matrix is given by 

[0 0 L(Im -hSi)-1A 
1 

(2.11) Mi= (M)- (Mli) = (Im-hSi)- lAi 

LO hBi(Im-hSi)-'Ai + Inj 

Since the elements of Mi depend on the step number i, it is possible to derive 
conditions only for local stability [9, p. 432]. 

Put 

(2.12) Di = In + hBi(Im - hSi)-1 Ai. 

Then the following theorem can be established. 
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Theorem 2.2. The VDC method is 
(i) locally stable in the strong sense if all eigenvalues of Di are inside the unit 

circle; 
(ii) locally stable if the eigenvalues of Mi are inside the unit circle and those 

on the boundary are weakly stable, i.e., the corresponding Jordan blocks are of 
order 1. 
Remark 2.2. When h -O 0, the matrix Di -- I, and hence the VDC method 
is locally stable as h - 0. 0 

Defining the matrix 

(2.13) F(x) = (x - 1)(Im - hS1) - hAiBi 

and the polynomial 

(2.14) C(x) = det[F(x)], 

we can easily prove the following theorem. 

Theorem 2.3. The VDC method is locally stable in ti in the strong sense if all 
zeros of 

(2.15) (x - 1)'mC(x) = 0 

are inside the unit circle; it is locally stable if they are inside or on the unit circle 
and those on the unit circle correspond to weakly stable eigenvalues of Mi. 

Remark 2.3. In the case of the implicit and fully implicit discretization, which 
are the most common, the polynomial C(x) does not depend on the kernel 
decomposition. In fact, the (j, k) element of the matrix F(x) defined in 
(2.13) can be written as 

fjk = (X - 1)(Gjk - hsjk - hWkk(tij, tik)), 

and so the stability conditions derived from the above theorem can be applied 
under the only hypothesis that the kernel is separable, even if the decomposition 
is unknown. 

Remark 2.4. The calculation of the n eigenvalues of (2.12) is reduced to the 
determination of the roots of a polynomial whose degree is the minimum of n 
and m. 

Corollary 2.1. If n > m, then the VDC method is not locally stable in the strong 
sense. 

Theorem 2.4. If n > m and det(AiBi) :$ 0, then the VDC method is locally 
stable in ti when all the zeros of C(x) are inside the unit circle. 

Theorem 2.5. If k(t, s) is a convolution degenerate kernel, then the eigenvalues 
of the matrix Mi do not depend on i. 

Note that for this kernel, Theorem 2.3 yields a priori stability conditions. 

Remark 2.5. We recall [9] that if cm = 1 , then the VDC method is equivalent 
to an extended Pouzet Runge-Kutta method for the discretization (a), and to a 
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de Hoog and Weiss Runge-Kutta method for the discretization (b). Therefore, 
all theorems so far stated are valid also for these Runge-Kutta methods. 

3. STABILITY THEOREMS FOR THE IMPLICIT DISCRETIZATION METHOD 

This section is concerned with stability properties of the VDC method applied 
to equation (1.10). We first deal with the particular case of two collocation 
parameters cl = 0, c2 = 1 . For such methods the discretizations of kind (a) 
and (b) coincide; moreover, the VDC method is equivalent to the trapezoidal 
rule. 

The following theorem holds. 

Theorem 3.1. The trapezoidal rule is locally stable in t1 if and only if each of 
the following three conditions holds: 

(i) k(tj , ti)k(ti+l , ti+,) - k(ti,~ ti+,)k(ti+l , ti) > ?; 

(ii) k(ti+l ~ti+,) +k(tj nti) <0; 
(iii) 

4 + hk(ti, ti) - hk(ti+l, ti+ ) 
- h214[k(ti,~ ti)k(ti+l , ti+1) - k(ti ti+i)k(ti+l , ti)] > O. 

Proof. The theorem is easily proved by applying Theorem 2.3 and the Routh- 
Hurwitz conditions to the coefficients of the second-degree polynomial C(x) 
given in (2.14). 0 

From Theorem 3.1, the following corollaries can be readily obtained. Let 

(3.1) y=max sup Ik(t,s)I. 
i (t,S)E[ti, t,+]2 

Corollary 3.1. If conditions (i) and (ii) of the previous theorem hold, then the 
trapezoidal rule is locally stable in t1 for hy < 1 . 

Corollary 3.2. If the kernel k(t, s) is of convolution type, k(t, s) = k(t - s), 
and if conditions (i) and (ii) hold, then the trapezoidal rule is locally stable in 
each ti if 

h < 4/ k(0)2 - k(h)k(-h). 

We now present some results which will be useful later. Define the following 
matrix: 

F(t) = (Yjk) = (ak(tObi(t)), j, k = 1,., n, 
and vector: 

P(t) = [b, (t)g(t), * bn (tg(t)]T. 
It is known that the solution y(t) of the integral equation (1.10) can be written 
as 

n 

y(t) = Zak(t)Zk(t), 
k=1 

where the vector z(t) = [z (t) ... Zn (t)]T is the solution of the associated differ- 
ential system: 

(3.2) z'(t) = f(t)z(t) + P(t), 

(3.2') Z(to) = 0. 
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Theorem 3.2. The differential system (3.2) is dissipative with respect to the Eu- 
clidean norm if and only if a function f(t) > 0 on [to, ox) exists such that 
ak(t) = -f(t)bk(t), k = 1, ..., n. 
Proof. The condition is sufficient, as it can be proved by a trivial extension of 
Theorem 3.4 in [1]. It is also necessary; in fact, if the system (3.2) is dissipative 
with respect to the Euclidean norm, the eigenvalues of ' (I + Vr) are negative 
or equal to 0. These eigenvalues are 0 (of multiplicity n - 2) and 

n n n 

Xi = a3 al(t)bl(t) + a3 al(t) b3(t) 
1=1 1=1 1=1 

n n n 

X2 = a, (t)bi (t) - Z al (t) E b2 (t). 
1=1 1=1 1=1 

The assertion now follows from the Cauchy-Schwarz inequality. E 

Definition 3.1. The degenerate kernel (1.11) is of class A if it satisfies the 
following conditions: 

(i) There exist p, q such that 1/p + 1 /q = 1 and 

/n I /p t /n 11q 

jE lal (t)1 IpG|bl (s )lq d s < xo. 

(ii) There exists a function f(t) > 0 on [to, ox) such that 

a, (t) = - f (t) b, (t), I = 1, . ... , n. 

From Theorem 3.2 and the results in [2] it follows that integral equations 
with kernel of class A are stable. 

A VDC method with implicit discretization can be written in compact form 
using the "Butcher array" 

c W 

w 

where the elements of W and w are defined in (1.8) and (1.7), respectively. 

Definition 3.2. A VDC method and a Runge-Kutta method for ordinary differ- 
ential equations characterized by the same Butcher array are said to be "corre- 
sponding." 

Then we can prove: 

Theorem 3.3. A VDC method corresponding to an algebraically stable Runge- 
Kutta method is, on kernels of class A, locally stable in each t1 andfor each 
stepsize h. 
Proof. Setting 

m 
zb = z1i + h E wjkbl(tik)Uik, 

k=1 
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we can write (2.8) as 
m r .1 

zl z + h , Wkbl (tik) g(tik) + r(tik)ZrkZ=1 n, 
k=1 r=(k 

( 3 . 3 z)+ 
w k 

[nt 
k k k r k 1 . . 

z3 zI=z + h E Wjk b(tik) g(tik) + r(tik)Z] 
k=l r=1 

l = 1 , ... , n, j =,...,m. 
This can be viewed as the corresponding Runge-Kutta method applied to the 
dissipative system (3.2) with initial conditions zj(ti) = Z4, j = 1, ... , n. 

With Zi = [zi, ... , zi], it follows from the algebraic stability of the Runge- 
Kutta methods that 

(3.4) IjZi+1 - Z*+j1j2 < IjZi - ZI1j2 for every Zi, Z7, 

where 11 H 112 denotes the Euclidean norm. Since, from (2.9), (2.12), one has 

(3.5) Zi+ i = D'Zi + hBi(Im - hSi) -I g 

the inequality (3.4) implies 
(3.6) jjDIVj2 < 1, i > 0 
and the assertion follows. O 

The previous theorem allows us immediately to state the following result 
about two of the most common VDC methods. 
Corollary 3.3. The VDC method whose collocation parameters are the Gauss 
points is, on kernels of class A, locally stable in each ti andfor each stepsize h . 
Corollary 3.4. The Runge-Kutta method Radau IIA is, on kernels of class A, 
locally stable in each ti and for each stepsize h. 

Now we wish to investigate the conditions for bounded propagation of iso- 
lated perturbations [9, p. 428], since it is known that local stability is only a 
necessary condition for this kind of stability. 
Theorem 3.4. If the corresponding Runge-Kutta method is algebraically stable, 
then the VDC method involves, on kernels of class A, a bounded propagation of 
isolated perturbations, provided that h < 1 / y II Wllo, where y is given by (3. 1) 
and W by (1.8). 
Proof. Denote by {vi} and {v7} the solution of (2.9) obtained for the inho- 
mogeneous terms {pi} and {p7I}, respectively. Since, from the definition of an 
isolated perturbation, we have IlPi - P7112 < c5 for i = 0, ..., r, we get from 
(3.5) that 

IIZL+1 - Z* 112 < IlDiD1211ZA - Z*j112 
(3.7) + llhBi(Im - hSi)-1 - (hBi(Im - hSi)-)*112 

< lIDiI21IZi - Z7 112 + 3. 

Setting 
O I i k 

fl, = m~ax I + 1: II IlDi-j 112 , 
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we obtain from (3.7), (3.4) 

(3.8) IjZi+1 - Zjt1 112 < KIIS i > 0. 

Analogously, for the vector Ui+1 = [uil, ui2, ..., u 4]T', (2.9) yields 

(3.9) 11 Ui+1 - Ui*+l 11 < n2JS i < r , 

where 
2= =max [1 + II(Im - hSi')lA1II2K], 

O<i<r 

whereas, for i > r, from (2.9) and (3.8), observing that the hypothesis h I W I Iy 
< 1 implies 

11 (Im -hS')-' llo < 1/(1-hyll W11.o) 

we obtain 

(3.10) I1Ui+1 - Ui+l < 3, iK>3r+1, > 

where 
n 

I3 = v'/i/(l - hyjIWIIoO) sup E lal(t)IEi. 
tE[tooo) 1=1 

Finally, from (1.2), 

(3.11) lu(ti+i) - u*(ti+i)I < ILI1211 U+1-Ui-+l 11 

where L is defined in (2.6). Therefore, putting 

= max{fi, E 2, 2 3, I|ILII2K2, I|ILII2K3}, 

we get 
JIVi 

- Vi 112 < n*J , i > 0, 

as asserted. 0 

4. NUMERICAL EXPERIMENTS 

In this section we report on numerical results intended to show the reliability 
of the stability conditions previously derived. 

We have chosen the following integral equation problems, whose solutions 
have, respectively, a constant, oscillating, and decreasing behavior: 

(A) y(t) = 1+120t-100(1-e-t)+ [100e(sIt)-120]y(s)ds, t E [0, 20], 

exact solution: y(t) = 1; 

y(t) = sin l Ot + 480/ 1 01 (sin l Ot - lO cos l Ot + 1 Oe-t) - 50(cos 1 Ot - 1) 

(B) 
+ [500e(s-t) + 480]y(s) ds, t E [0, 20], 

exact solution: y(t) = sin lOt; 

y(t) = e-t - 3000(t + 0.1)/(1 + t)(e-2t - 1) 

(C) - 6000 (t + 0.1)/(1 + t)e-sy(s) ds, t e [0, 20], 

exact solution: y(t) = e-t. 
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Moreover, in order to test the reliability of the stability conditions in nonlin- 
ear problems, we consider the following equations: 

(D) y(t) = t - 1 + 2e-t + j (2e'-t - l)y2(s) ds, t E [0, 40], 

exact solution: y(t) = 1; 
t 

(E) y(t) = 1 + t + t2/2 - j(1 + t - s)y2(s) ds, t E [0, 40], 

exact solution: y(t) = 1. 
As to the nonlinear problems, we apply the stability theorems to their lin- 

earized versions. 
Problems (A)-(E) have been solved with the following VDC methods: 

(1) m=2, c1 =0, c2= 1; 
(2a) m = 3, c1 = 0, C2 = 1/2, C3 = 1 (Lobatto points) with implicit 

discretization; 
(2b) m = 3 (Lobatto points) with fully implicit discretization; 
(3a) m = 4, cl = 0.08858, C2 = 0.40947, C3 = 0.78766, c4 = 1 (Radau 

IIA points) with implicit discretization; 
(3b) m = 4 (Radau IIA points) with fully implicit discretization. 
For the convolution problems (A), (B), (D), and (E), the application of the 

stability theorems derived in ??2 and 3 requires the calculation of the roots 
of the polynomial (2.14), which in this case is of second degree. In virtue of 
Theorem 2.5, this calculation is made only in the first step. In problem (C), the 
calculation of the root of the polynomial (2.14) whose degree, in this case, is 
one, must be made for every step. Of course, since the kernel is of class A, for 
the method (3a), this computation could be avoided in virtue of Theorem 3.3. 

In Tables 1-5 we report relative and absolute errors in selected points for 
the above collocation methods applied to the integral problems (A)-(E). The 
quantities Xmin and Xmax are respectively the minimum and the maximum of 
the values assumed in the integration range by the maximum modulus root of 
the polynomial (2.14). 

We observe that, in all cases, the VDC methods have a stable behavior every 
time the stability condition is satisfied. However, for problem (C), the numerical 
solution decreases more slowly than the true solution, and thus the relative 
error can be large; this is particularly true for the VDC methods (1) and (2). 
In some cases (method (1), problem (C), h = 0.1; method (2a), problem (C), 
h = 0.5; method (3a), problem (A), h = 0.5; methods (3a), (3b), problem (D), 
h = 0.05) the method has a stable behavior even if the stability condition is 
not satisfied; this is because the stability condition holds for the vector vi and 
not only for u(ti) . 

In other cases (for example method (1), problem (A), h = 0.25; method 
(2a), problem (B), h = 0.5; problem (D), h = 0.05 and so on), the stability 
condition is not satisfied and the method is unstable. 

Note that, for method (1) applied to problems (A) and (B), as expected, Xmax 
is less than 1 if and only if the hypothesis of Theorem 3.3 holds. 

Finally, we wish to stress that numerical results, more numerous than those 
reported here, show that the fully implicit discretization is more accurate than 
the implicit one; and the latter has the expected stable behavior in the cases 
covered by Theorem 3.3. 
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TABLE 1 

Collocation parameters: c1 = 0, C2 = 1 

Problem h t Rel.Err. Abs.Err. Xmin Xtnax 

10 .70E 05 .70E 05 

.25 .29E 01 .29E 01 

20.25E 12 .25E 12 

10 .48E-14 .48E-14 

.1 .84E 00 .84E 00 

2 .18E-13 .18E-13 

10 .54E 14 .27E 14 

.1 .20E 01 .20E 01 

20 .28E 28 .25E 28 

10 .47E-01 .23E-01 

.05 .57E 00 .57E 00 

2 .24E-01 .21E-01 

10 .17E-01 .77E-06 

.1 .22E-O1 .1OE 01 

C 22 .31E 03 .64E-06 

10 .62E-02 .27E-06 

.06 .43E-02 .99E 00 

2 .11E 03 .23E-06 

10 .29E 00 .29E 00 

.15 .13E 01 .13E 01 

40 .10E 06 .10E 06 

10 .38E-01 .38E-01 

.05 .11E01 .llEO1 

2 .37E01 .37E 01 

10 .00E 00 .OOE 00 

.25 .99E 00 .99E 00 

20 .OOE 00 .OOE 00 

10 .47E-15 .47E-15 

.1 .99E 00 .99E 00 

2 .83E-16 .83E-16 
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TABLE 2 
Collocation parameters: c1 = 0, C2 = 1/2, C3 = 1 (impI. discr.) 

Problem h I t Rel.Err. Abs.Err. Xmin Xnax| 

10 .30E 10 .M0E 05 

.5 .99E 01 .99E 01 

20 .10E 22 .10E 22 

10 .14E02 .14E-02 

.25 .65E 00 .65E 00 

20 .14E-02 .14E-02 

10 .16E 19 .83E 18 

.5 .12E 03 .12E 03 

20 overflow overflow 

10 .81E-01 .41E-01 

.1 .27E 00 .27E 00 

20 .53E-01 .46E-01 

10 .1OE 01 .46E-04 

.5 .lOE-OO .14E 01 

20 .18E 05 .38E04 

10 .11E-04 .53E-09 

.1 .79E-01 .99E 00 

20 .21E 00 .43F,09 

10 .49E01 .494E01 

. 5 .26E 01 .26E 01 

18* .61E 01 .61E 06 

10 .44E05 .44E-05 

.05 .lE 01 lE 01 

20 .57E-03 .57E-03 

10 .27E-15 .27E-15 

.5 .97E 00 .97E 00 

20 .51E14 .51F,14 

10 .27E14 .27E14 

.1 .99E 00 .99E 00 

I 20 .17E13 .17E-13 , 

*In the next step, the nonlinear system of the collocation equations cannot be solved. 
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TABLE 3 
Collocation parameters: c1 = 0, C2 = 1/2, C3 = 1 (fully impl. discr.) 

Problem h t Rel.Err. Abs.Err. Xmin Xmax 

10 .75E03 .75E03 

.5 .55E 00 .55E 00 

A 20 .75E-03 .75E03 

10 .10E-06 .10E06 

.1 .95E 00 .95E 00 

20 .10E-06 .10E-06 

10 .21E 10 .1OE 10 

.5 .12E 03 .29E 02 

20 .39E 19 .34E 19 

10 .30E-03 .1OE-02 

.05 .87E 00 .87E 00 

20 .54E-04 .47E-04 

10 .69E-03 .31E-07 

.5 .74E-01 .99E 00 

20 .13E 02 .27E-07 

10 .14E-06 .65E-11 

.06 .72E-01 .99E 00 

20 .27E-02 .55E-11 

10 .16E-02 .16E02 

5 .26E 01 .26E 01 

40 .25E 04 .25E 04 

10 .28E-06 .28E-06 

.05 .11E 01 .11E 01 

20 .68E-04 .68E-04 

10 .1OE-14 .1OE-14 

. 5 .97E 00 .97E 00 

20 .17E-14 .17E-14 

10 .27E-14 .27E-14 

.1 .99E 00 .99E 00 

20 .17E-13 .17E-13 
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TABLE 4 
Collocation parameters: c1 = .08858, c2 = .40947, C3 = .78766, 

C4= 1 imply . discr.) 

Problem h t Rel.Err. Abs.Err. Xmin Xmax 

10 .36E-03 .36E-03 

.5 .14E 01 .14E 01 

20 .36E-03 .36E-03 
-A-- 

10 .28E08 .28E08 

.1 .95E 00 .95E 00 

20 .28E-08 .24E-08 

10 .17E 01 .86E 00 

.5 .99E 00 .99E 00 

20 .lE 01 .1OE 01 

10 .76E-06 .38E-06 

.05 .87E 00 .87E 00 

20 .38E-06 .33E-06 

10 .36E-05 .16E-09 

.5 .30E-02 .99E 00 

20 .65E-01 .13E-09 

10 .49E-08 .22E-12 

.06 .90E-03 .99E 00 

20 .57E-05 .11E-13 

10 .11-05 .11E05 

5 .26E 01 .26E 01 

35* .29E 01 .20E 01 

10 .16E-10 .16E-10 

.05 .lE 01 .1E 01 

20 .39E-08 .39E-08 

10 .44E-15 .44E-15 

5 .97E 00 .97E 00 

20 .41E14 .41E14 

10 .44E-15 .44E-15 

.1 .99E 00 .99E 00 

20 .54F-14 .54E-14 

*In the next step, the nonlinear system of the collocation equations cannot be solved. 
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TABLE 5 
Collocation parameters. c1 = .08858, c2 = .40947, c3 = .78766, 

c4 = 1 (fully imply. discr.) 

Problem h t Rel.Err. Abs.Err. Xmin Xmax 

10 .12E-07 .12E-07 

.5 .24E 00 .24E 00 

20 .12E-07 .12E-07 

10 .63E-11 .63E-ll 

.1 .95E 00 .95E 00 

20 .64E-11 .64E-11 

10 .43E-02 .22E-02 

.5 .17E 01 .17E 01 

20 .19E 00 .17E 00 

10 .94E-07 .51E-07 

.05 .87E 00 .87E 00 

20 .54E-07 .54E-07 

10 .12E-06 .57E-11 

.5 .34E-02 .99E 00 

20 .19E-02 .40E-11 

10 .49E-08 .22E-12 

.06 .61E-03 .99E 00 

20 .57E-05 .11E-13 

10 .94-07 .94E-07 

. 5 .26E 01 .26E 01 

40 .63E 00 .63E 00 

10 .14E-10 .14E-10 

.05 lE 01 .lE 01 

20 .35E-08 .35E-08 

10 .55E-16 .55E-16 

. 5 .97E 00 .97E 00 

20 .21E-14 .21E-14 

10 .11E-14 .11E-14 

.1 .99E 00 .99E 00 

2 .111E-13 .11E-13 



134 M. R. CRISCI, E. RUSSO, AND A. VECCHIO 

BIBLIOGRAPHY 

1. S. Amini, On the stability of Volterra integral equations with separable kernels, Appl. Anal. 
24 (1987), 241-251. 

2. S. Amini, C. T. H. Baker, P. J. van der Houwen, and P. H. M. Wolkenfelt, Stability analysis 
of numerical methods for Volterra integral equations with polynomial convolution kernels, J. 
Integral Equations 5 (1983), 73-92. 

3. C. T. H. Baker, Structure of recurrence relations in the study of stability in the numeri- 
cal treatment of Volterra integral and integro-differential equations, J. Integral Equations 2 
(1980), 11-29. 

4. J. G. Blom and H. Brunner, The numerical solution of nonlinear Volterra integral equations 
of the second kind by collocation and iterated collocation methods, SIAM J. Sci. Statist. 
Comput. 8 (1987), 806-830. 

5. J. M. Bownds and J. M. Cushing, Some stability criteria for linear systems of Volterra integral 
equations, Funkcial. Ekvac. 15 (1972), 101-117. 

6. H. Brunner, Superconvergence in collocation and implicit Runge-Kutta methods for Volterra- 
type integral equations of the second kind, Numerical Treatment of Integral Equations (J. 
Albrecht and L. Collatz, eds.), Internat. Ser. Numer. Math., vol. 53, Birkhauser, Basel, 
1980, pp. 54-72. 

7. ., Collocation methods for one-dimensional Fredholm and Volterra integral equations, 
The State of the Art in Numerical Analysis (A. Iserles and M. J. D. Powell, eds.), Clarendon 
Press, Oxford, 1987, pp. 563-600. 

8. H. Brunner and S. P. N0rsett, Superconvergence of collocation methods for Volterra and Abel 
integral equations of the second kind, Numer. Math. 36 (1981), 347-358. 

9. H. Brunner and P. J. van der Houwen, The numerical solution of Volterra equations, CWI 
Monograph, North-Holland, 1986. 

10. M. R. Crisci, E. Russo, and A. Vecchio, On the stability of the collocation methods for the 
numerical solution of the second kind Volterra integral equation, BIT 29 (1989), 258-269. 

11. - , On the stability of the one-step exact collocation method for the second kind Volterra 
integral equation with degenerate kernel, Computing 40 (1988), 315-328. 

12. K. Dekker and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differential 
equations, CWI Monograph, no. 2, North-Holland, Amsterdam, 1984. 

13. F. de Hoog and R. Weiss, Implicit Runge-Kutta methods for second kind Volterra integral 
equations, Numer. Math. 23 (1975), 199-213. 

14. P. J. van der Houwen, Stability results for discrete Volterra equations, Report NW 149/83, 
Centre for Mathematics and Computer Science, Amsterdam, 1983. 

15. P. J. van der Houwen and P. H. M. Wolkenfelt, On the stability of multistep formulas for 
Volterra integral equations of the second kind, Computing 24 (1980), 341-347. 

(M. R. Crisci and E. Russo) DIPARTIMENTO DI MATEMATICA E APPLICAZIONI, UNIVERSITX DEGLI 
STUDI DI NAPOLI, VIA MEZZOCANNONE, 8, 1-80134 NAPOLI, ITALY 

(A. Vecchio) ISTITUTO PER APPLICAZIONI DELLA MATEMATICA, CONSIGLIO NAZIONALE DELLE 
RICERCHE, VIA P. CASTELLINO, 11 1, 80131 NAPOLI, ITALY 

E-mail address, A. Vecchio: iam%areana@icnucevx.cnuce.cnr.it 


